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Any physical quantum system is in thermal contact with its environment and if left

undisturbed, will always come to thermal equilibrium with its surroundings. Nuclear

magnetic resonance techniques however displace the system from its thermal equilibrium

position. The amount of time a system may be displaced from its thermal equilibrium

position is inherently time limited due to constant information exchange between the

system and the environment. This fundamental process is known as quantum relaxation

or quantum decoherence.

In this thesis we focus our attention on the relaxation dynamics of nuclear spin ensembles.

Particular spin con�gurations may display surprisingly long relaxation time constants

and surprising dynamical behaviour as the system deviates further from its thermal

equilibrium position. A simple framework for the description of nuclear spin systems far

from thermal equilibrium is described and its necessity is experimentally demonstrated

by consideration of simple model systems. The presented framework aims to advance

recent developments in the storage of hyperpolarised materials, which ideally posses

exceptionally long relaxation times and highly ordered spin con�gurations.
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Chapter 1

Introduction

The humble beginnings of Nuclear Magnetic Resonance (NMR) can be tracked back

all the way to the 1940s. Following Rabi's description of the magnetic resonance e�ect

Purcell, Torrey, Pound and Bloch, Hansen, Packard almost simultaneously (24th of De-

cember, 1945 and 29th of January, 1946) reported the observation of nuclear induction

for the �rst time [1{3].

Since then, it is probably fair to say that NMR has grown into something much bigger

than the founding fathers could have hoped for. The applicability of NMR is seemingly

endless and ranges from elementary physics to quantum computation, material science,

organic chemistry, medical science, biology and many other �elds of active research.

Major landmarks in the �eld of NMR include the development of magnetic resonance

imagining, two-dimensional NMR and its extension to protein structure elucidation [4{

7]. For obvious reasons these developments continue to in
uence our every day life by

guiding biomedical and pharmaceutical research.

Nowadays NMR is considered a standard tool in many areas of active research. Nonethe-

less, it seems that whenever the community is convinced to have reached the stories end,

a new idea magically appears and opens up a new chapter. In recent years this has cer-

tainly been the development of hyerpolarisation techniques [8{19].

Despite a great number of bene�ts, NMR su�ers from a weak magnetic response of the

sample. Hyperpolarisation techniques try to address this problem by displacing the sys-

tem from its equilibrium position to a highly non-equilibrium state. The non-equilibrium

state often displays a much stronger magnetic response than the thermal state under

identical conditions. In practical applications this leads to a tremendous reduction in

experimental time.

It will be the aim of this thesis to explore some properties of equilibrium and non-

equilibrium systems with focus on their theoretical description. Surprisingly, the stan-

dard description of NMR experiments can lead to non-physical predictions in the case

of strongly perturbed spin systems. A new approach for the treatment of highly non-

equilibrium systems will be discussed in order to clarify and remedy the situation.

1



2 Chapter 1 Introduction

1.1 Nuclear magnetism

1.1.1 The NMR setup

For conventional high-�eld NMR experiments the sample is initially placed inside the

center of a magnet. As illustrated in �gure 1.1a it is NMR convention to assume that

the main magnetic �eld B 0 is aligned with the z-axis of the laboratory frame

B 0 = B 0
zez =

2

6
4

0

0

B0
z

3

7
5 : (1.1)

The magnetic �eld strength along the z-axis B0
z is speci�ed in units of Tesla [T].

Figure 1.1: a) Schematic representation of a modern high-�eld NMR magnet. The
main magnetic �eld B 0 is by convention along thez-axis. The sample is located in the
center of the magnet and surrounded by RF coils.b) A closer look at the sample region
of the magnet. The solenoid RF coil generates a �eldB RF that is perpendicular to the
main magnetic �eld. Note: In modern NMR spectrometers the RF coil is usually given
by a saddle coil.

The potential energy Emag arising from the interaction of a magnetic material and a

magnetic �eld is given by the following expression

Emag(� ) = � � � B 0 = � k � k



 B 0




 cos(� ); (1.2)

where � represents the angle between the magnetic �eld and the magnetic moment� ,

and the norm of a vector kvk is de�ned by

kvk =
p

v � v: (1.3)
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Equation 1.2 implies that the (bulk) magnetic moment of the sample tends to align itself

with the main magnetic �eld. This leads to a net polarisation of the sample along the

z-axis and the sample becomes magnetised. The build up of the magnetisation follows

an exponential law (a more thorough discussion follows later)

� (t) =

2

6
4

0

0

M0
eq(1 � exp (� t=T1))

3

7
5 and � (1 ) =

2

6
4

0

0

M0
eq

3

7
5 : (1.4)

The equilibrium magnetisation or net polarisation of the sample is denoted by M0
eq (see

�gure 1.2). The characteristic time constant T1 with which the magnetisation builds up

is called longitudinal relaxation time constant.

Figure 1.2: After the sample is exposed to a magnetic �eld along thez-axis (left) the
magnetisation � z slowly starts to build up (right). The build up follows an exponential
law and eventually reaches its equilibrium value M0

eq.

1.1.2 Precession and relaxation

The magnetic moment may be perturbed from its equilibrium position by the applica-

tion of an oscillating radio frequency (RF) �eld. As indicated in �gure 1.1b the radio

frequency �eld is generated by a coil perpendicular to the main magnetic �eld. If the

perturbation is su�ciently strong and quick (a so-called RF pulse) the magnetic mo-

ment may be completely rotated into the xy-plane of the laboratory system. Being in

the xy-plane the main �eld exerts a torque onto the magnetic moment

� = � � B 0: (1.5)

Following the original description by Bloch, both the magnetic moment and the torque

may be related to the angular momentum of an object [3]

d
dt

L = � ; � = 
 L and 
 = 2 � �
q

2m
gcl; (1.6)
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where q denotes the charge of the object in Coulomb [C] andm its mass in kilogram

[kg]. The dimensionless constantgcl is the classicalg-factor. The overall proportionality

constant 
 relating a magnetic moment to its angular momentum is the gyromagnetic

ratio and usually speci�ed in [rad T � 1 s� 1].

Substitution of the relations above into equation 1.5 leads to the so-calledBloch equation

d
dt

� = � 
 B 0 � � ;

d
dt

2

6
4

� x (t)

� y(t)

� z(t)

3

7
5 = � 
 B0

z

2

6
4

� � y(t)

� x (t)

0

3

7
5 ;

(1.7)

where the minus sign follows from the anti-commutativity of the cross product. For a

conventional NMR setup the Bloch equations are readily solved and yield the following

expressions 2

6
4

� x (t)

� y(t)

� z(t)

3

7
5 =

2

6
4

cos(! 0t)

� sin(! 0t)

0

3

7
5 for � (0) =

2

6
4

1

0

0

3

7
5 : (1.8)

The equations above indicate a rotation of the magnetic moment in thexy-plane with

angular frequency ! 0 = � 
 B0
z. The angular frequency ! 0 is called Larmor frequency

and the motion of the magnetic momentLarmor precession.

The velocity of the Larmor precession is determined by the magnitude of the Larmor

frequency, but the sense of rotation depends upon the sign of the gyromagnetic ratio.

Figure 1.3 illustrates that the magnetic moment precesses clockwise for positive gyro-

magnetic ratios (
 > 0) and counter-clockwise for negative gyromagnetic ratios (
 < 0).

Figure 1.3: Sense of rotation for a magnetic moment� depending on the sign of the
gyromagnetic ratio 
 . For positive 
 the sense of rotation is clockwise, whereas for
negative 
 the sense of rotation is anti-clockwise.
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The Bloch equations in their current form are slightly 
awed. Not only do they indicate

that the magnetic moment rotates in xy-plane, but it does so for all time. This cannot be

the case, as experiments indicate a decay of the transverse magnetisation and a recovery

of the longitudinal magnetisation with increasing time. A more realistic description of

the NMR experiments is therefore given by the modi�ed expressions below [20]:

2

6
4

� x (t)

� y(t)

� z(t)

3

7
5 =

2

6
4

cos(! 0t) exp (� t=T2)

� sin(! 0t) exp (� t=T2)

M0
eq(1 � exp (� t=T1))

3

7
5 for � (0) =

2

6
4

1

0

0

3

7
5 : (1.9)

where T2 represents thetransverse relaxation time constant. A graphical representation

of the modi�ed Bloch equation is shown in �gure 1.4 (left panel). The magnetic moment

slowly spirals its way up again until it is fully aligned with the z-axis.

Figure 1.4: left panel) Representation of the modi�ed Bloch equations on a unit
sphere. If the initial position of the magnetic moment � lies in the xy-plane the
magnetic moment starts precessing around thez-axis of the laboratory frame. Due
to relaxation the magnetic moment slowly spirals its way upwards. The transverse
components can be seen to die out whereas the longitudinal magnetisation recovers.
right panel) The oscillation of the transverse magnetisation is picked up by a detector.
The resulting complex FID is illustrated at the top. The Fourier transform F converts
the FID into a complex spectrum. The real part of the spectrum (left) is the absorption
Lorentzian and the imaginary part (right) is the dispersive Lorentzian. Oscillating
components of the time-domain signal appear at a frequency! 0. The whole process
may be reversed by applying the inverse Fourier transformF � 1 to S(! ).
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1.1.3 The NMR signal

It is exactly this precession motion that an NMR experiment aims to observe. According

to Maxwell's equations (Faradays induction law) a time-varying magnetic �eld is capable

of inducing an electric current [21]

r � E = �
@
@t

B : (1.10)

As a consequence, the transverse component of the rotating magnetic moment generates

an oscillating electric current in the RF coil. This current may be picked up by a suitable

detector [22]. The resulting NMR signal is called afree induction decay (FID). For

technical reasons it is conventional to combine thex- and y-component of the oscillation

into a single signal object known ascomplexFID

s(t) = M 0
eq(� x (t) + i � y(t))

= M 0
eq

�
cos(! 0t) � i sin(! 0t)) exp(� t=T2)

�

= M 0
eq exp(� i! 0t) exp(� t=T2):

(1.11)

While the complex FID contains all the necessary information, its interpretation by eye

is di�cult. For this reason, NMR data is usually presented in form of a spectrum. The

NMR spectrum is generated by applying aFourier transform to the signal s(t). The

Fourier transform is a mathematical tool that helps to identify the frequency components

of a given signal. This is achieved by converting a function of time into a function of

frequency. The formal de�nition of the (one-sided) Fourier transform is given below:

S(! ) = Ff s(t)g =
Z 1

0
s(t) exp(� i!t )dt; (1.12)

with S(! ) denoting the resulting spectrum. Application of the Fourier transform to the

prototype signal of equation 1.11 results in a so-calledcomplex Lorentzian

S(! ) = Ff M0
eq exp(� i! 0t) exp(� t=T2)g =

M0
eqT2

1 + ( T2 (! 0 � ! ))2 � i
M0

eq(T2)2 (! 0 � ! )

1 + ( T2 (! 0 � ! ))2 :

(1.13)

The Lorentzian decomposes into a real and an imaginary part. The real part represents

an absorption and the imaginary part a dispersion Lorentzian.

The complex FID of equation 1.9 with its corresponding complex Lorentzian are shown

in �gure 1.4 (right panel). The interpretation of the signal is now considerably easier.

Whenever the signal contains a frequency component! the resulting spectrum shows a

spectral peakat that particular position, otherwise it is zero.
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1.1.4 Microscopic nuclear magnetism

The description above constitutes theclassical description of NMR. The magnetic mo-

ment is treated as a bulk property of the sample and the dynamics are governed by

classical equations. From a microscopic point of view however, the question "what gen-

erates nuclear magnetism?" still remains.

A partial resolution to this problem was given by the famous double slit experiment

by Otto Stern and Walther Gerlach [23]. Consider the following thought experiment:

"What happens to a particle with no angular momentum moving through an inhomo-

geneous magnetic �eld?"

According to equation 1.2 the magnetic energy of the particle depends on its magnetic

moment. The exerted magnetic force on the particle may be deduced by di�erentiating

the potential energy

F mag = r (� � B ) = � z
dB z(z)

dz
ez; (1.14)

where it is assumed (for simplicity) that the magnetic �eld varies along the z-axis only.

This is an obvious oversimpli�cation as this would contradict Gauss's 
ux theorem [21].

The force above indicates a de
ection of the particles path along thez-axis. The mag-

nitude of the de
ection depends upon its magnetic moment.

Since equation 1.6 relates the magnetic moment of a particle to its angular momentum,

an angular momentum-less particle would not experience a de
ection force (F mag = 0)

and continue its linear motion.

It is exactly this experiment that Stern and Gerlach realised. The angular momentum-

less particles were provided by a silver atom beam. The electronic con�guration of a

silver atom is given by: [Kr]4d105s1. The unpaired 5s1 electron occupies the necessary

orbital angular momentum ground state (J = 0).

Figure 1.5: Brief sketch of the double slit experiment. The whole setup is under a
strong vacuum. A small electric oven provides a beam of silver atoms which is focused by
a collimator. On their way to the screen the silver atoms experience an in-homogeneous
magnetic �eld provided by an electromagnet.

An outline of the double slit experiment can be seen in �gure 1.5. Surprisingly, the
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results indicated a clear de
ection pattern with the beam being split into two distinct

rays. This observation was not in agreement with physical laws at the time.

A full resolution to this problem was later given by Goudsmit and Uhlenbeck [24]. Within

the framework of the newly developed quantum physics, they proposed the existence of

intrinsic angular momentum carried by the electron. Similar to the classical case, it had

to be proportional to the magnetic moment of the electron

� = 
 e
~̂I; 
 e =

q
2me

ge and ~̂I =

2

6
4

Î x

Î y

Î z

3

7
5 : (1.15)

Here 
 e denotes the gyromagnetic ratio of the electron,me its mass andge its g-factor.

The object ~̂I indicates a quantum mechanical (vector) operator and measures spin angu-

lar momentum along the f x; y; zg-axis. An arrow is used to distinguish classical vectors

and vector operators. It is however common to loosely writeI instead of ~̂I whenever

there is no cause for confusion.

This new type of angular momentum later came to be known asspin angular momen-

tum, so that Î represents a spin angular momentum operator.

Being a quantum mechanical object means that spin angular momentum isquantised.

Quantisation implies that a particular degree of freedom stores energy in discrete pack-

ages proportional to ~ � 1:054� 10� 34J s. The discrete states a system may occupy

are then labelled byquantum numbers. In the case of spin angular momentum one may

classify the state by its (ground state) spinI and a projection quantum number mI . The

projection number refers to the spin angular component along thez-axis (by conven-

tion). A spin angular momentum state is then identi�ed with a collection of quantum

numbers as indicated below:

physical state 7! j I; m I i : (1.16)

The collection of quantum numbers jI; m I i is called a state vector or ket vector (more

on ket vectors follows later).

For the double slit experiment two discrete states are identi�ed: "up" for the top beam

of atoms and "down" for the lower beam of atoms. The electron may then occupy two

di�erent spin states. From the quantum theory of angular momentum it follows that

the spin quantum number has to equalI = 1=2 [25]. The projection number mI may

then either be mI = +1 =2 for "up" or mI = � 1=2 for "down". This may be visualised

as shown in �gure 1.6.

The double slit experiment indisputably identi�ed spin angular momentum for electrons.

Similar considerations later showed that nuclei (in fact all elementary particles) posses

spin angular momentum as well. In this case one speaks ofnuclear spin angular mo-

mentum. The existence of nuclear spin is what enables NMR experiments. If nuclear
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Figure 1.6: Relative orientation of the magnetic moment and spin angular momentum
depending on the sign of the gyromagnetic ratio and its projection numbermI . The
spin angular momentum is indicated by solid arrows and the magnetic moment by
hollow arrows. According to equation 1.15 the spin angular momentum and magnetic
moment are parallel for positive 
 and anti-parallel for negative 
 . Strictly speaking
this applies to systems that occupy a spin +1=2 state. The relative orientation of the
spin angular momentum is inverted if the system occupies a spin� 1=2 state.

spins are visualised as vectors being "attached" to the nuclei of a sample, macroscopic

magnetism may be understood as a summation of contributions from all the individual

spin angular momenta (see �gure 1.7).

Figure 1.7: In zero magnetic �eld the spin angular momentum vector of a particle may
point into any spatial direction. There is no preferential axis since space is isotropic.
The isotropy of space is broken through the application of a static magnetic �eld. The
magnetic potential energy depends upon the relative orientation of the magnetic �eld
and the spin angular momentum through equation 1.2. The thermodynamic principle
of minimum energy then implies that the particles preferably occupy the lower energy
spin state. For 
 > 0 this is the mI = +1 =2 spin state. As a result there is a slight net
polarisation along the positive z-axis at thermal equilibrium.

It is worthwhile to stress that the term "spin" might be misleading. It suggests a phys-

ical rotation of the particle, but this is not true. The necessary velocities to generate
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such large magnetic moments for small charge distributions (like the electron) would

greatly exceed the speed of light. This was already recognised by Uhlenbeck [24]. Spin

angular momentum therefore has nothing to do with the particle undergoing a rotation.

Spin is simply an intrinsic property of particles very much like mass, charge, etc.

1.1.5 Nuclear Zeeman e�ect

In the absence of a magnetic �eld the net magnetic moment vanishes. This does not

mean that spin angular momentum vanishes (similar to how a person does not suddenly

disappear as one enters zero gravity). It simply means that the interaction between

the spins and the magnetic �eld got weaker. At zero magnetic �eld the spin states

j1=2; +1=2i and j1=2; � 1=2i have identical energy and are said to bedegenerate. In

general the projection numbermI for a particle with spin I may take one of the values

from the set f� I; � I + 1 ; : : : ; I � 1; I g. It follows that a spin state is (2I + 1)-fold

degenerate at zero magnetic �eld [22].

If the sample is subjected to a magnetic �eld (by convention along the z-axis), the

energies start to split. The energy level splitting due to the interaction with a static

magnetic �eld is called Zeeman e�ect. In the case of nuclei one discusses thenuclear

Zeeman e�ect. Figure 1.8 illustrates the nuclear Zeeman e�ect for protons (I = 1=2)

and deuterons (I = 1).

Figure 1.8: Nuclear Zeeman e�ect for protons with I = 1=2 and deuterons with
I = 1. At zero magnetic �eld the spin states are (2I + 1)-degenerate. This leads to two
degenerate states for protons and three degenerate states for deuterons. Application
of a static magnetic �eld leads to a splitting of the energy levels and the degeneracy is
completely lifted. The di�erence in energy between two adjacent energy levels equals
the Larmor frequency of the nuclei for that particular �eld.

According to equation 1.15 the magnetic moment of the sample� may be expressed in

terms of a spin angular momentum vector~̂I . The quantum mechanical version for the

magnetic energy of the sample (see equation 1.2) may then be expressed shown below:

Emag = � � � B 0 = � 
 i
~̂I � B 0; (1.17)
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where 
 i is the gyromagnetic ratio of nuclei i . Since the only non-vanishing magnetic

�eld component is along the z-axis, equation 1.17 reduces to the following:

Emag = � 
 i B0
zI z = ! 0I z: (1.18)

The presence of thez-angular momentum operatorI z indicates that the magnetic energy

of a state jI; m I i is given by

Emag(mI ) = mI ! 0: (1.19)

The energy di�erence between any two adjacent energy levels (see �gure 1.8) then reduces

to the Larmor frequency ! 0

Emag(mI ) � Emag(mI � 1) = mI ! 0 � (mI � 1)! 0 = ! 0: (1.20)

As described earlier, typical NMR experiments measure the frequency of the oscillating

transverse component of the magnetisation vector. But this frequency is identical to

the Larmor frequency of the sample. It therefore follows, that NMR experiments are

sensitive to transitions between adjacent energy levels.
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1.2 Mathematical framework

The discussion in the previous section illustrated the quantum mechanical origins of

nuclear magnetism. The next several chapters introduce these concepts in a more formal

way to facilitate the quantum description of NMR. For NMR purposes the system may

only occupy a �nite number of spin states. This has some implications for the underlying

structure of the state space. Much of the following discussion will be written from this

point of view.

1.2.1 State vectors

In quantum mechanics the physical state of the system is described by a so-calledket j i .

A ket is an element of some Hilbert spaceH. For �nite systems H possesses dimension-

ality dim( H) = NH and j i may be considered a vector inH . It is therefore custom to

call j i a ket vector.

In analogy to the Hilbert space H, one may de�ne its dual spaceH � through the adjoint

map (y)

(c j i )y = c� h j 2 H � ; (1.21)

here c 2 C is some complex number and (� ) denotes complex conjugation. The adjoint

of a ket h j is called a bra or bra vector. The dual spaceH � therefore has the same

dimensionality as H.

The scalar product of any two vectors (j i ,j� i ) is de�ned by the bra-ket operation h� j i .

The norm of a vector j i is then given by the following expression

kj ik =
p

h j i : (1.22)

For a �nite dimensional Hilbert space one may always choose an orthonormal basis

fj bn ig of ket vectors

hbm jbn i = � mn ; hbm jbm i = 1 ; (1.23)

where � mn denotes the Kronecker delta with the property � nn = 1 and � mn = 0 for

m 6= n. A representation for a state j i is constructed by making use of a basis vector

expansion

j i =
NHX

n

jbn i hbn j i =
NHX

n

jbn i cn ;
NHX

n

jbn i hbn j = 1: (1.24)

The scalarscn 2 C are the expansion coe�cients and 1 denotes the identity on H. An

explicit form of the inner product may then be given as follows

h� j i =
NHX

n;m

h� jbm i hbm jbn i hbn j i =
NHX

n;m

� mn d�
m cn =

NHX

n

d�
ncn : (1.25)
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1.2.2 Operators

In quantum mechanics transformations of states are represented bylinear operators. In

general, the application of an operatorQ̂ onto a state j i leads to a new statej 0i

�
�  0� = Q̂ j i : (1.26)

To simplify notation for the rest of the discussion the "hat" of an operator is omitted

Q̂ = Q. Once a basis has been �xed (linear) operators may be represented byNH � NH -

dimensional matrices. The matrix elements are determined by their action on the basis

elements

[Q]mn = hbm jQjbn i : (1.27)

The action of any operator Q onto some statej i may then be calculated according to

standard matrix-vector multiplication

�
� 0� = Q j i

=
NHX

m;n

jbm i hbm j Q jbn i hbn j  i

=
NHX

m;n

jbm i hbm jQjbn i cn =
NHX

m;n

jbm i [Q]mn cn :

(1.28)

The transformation of bra vectors follow in similar fashion



 0

�
� = h j Q =

NHX

n

cn hbn j Q

=

 
NHX

n

Qy jbn i c�
n

! y

=

 
NHX

m;n

jbm i hbm j Qy jbn i c�
n

! y

=

 
NHX

m;n

jbm i [Qy]mn c�
n

! y

=

 
NHX

m;n

jbm i [Q]�nm c�
n

! y

=
NHX

m;n

cn [Qnm ] hbm j :

(1.29)

The relations above indicate that ket vectors may be represented bycolumn vectorsand

bra vectors by row vectors.

Associated to each operatorQ there exists a special set of ket vectorsfj qn ig . The

members of the setfj qn ig are calledeigenstatesor eigenvectorsof the operator Q. When

Q acts on one of its eigenstates,Q returns the same ket vector up to some constant

Q jqn i = qn jqn i : (1.30)
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The constant qn is an eigenvalueof Q corresponding to the eigenstatejqn i . The set of

all eigenvaluesf qng is also called thespectrum of the operator Q.

The eigenvalues of an operator are in general complex. But forself-adjoint or hermitian

operators A all eigenvalues are real

A jan i = an jan i ; an 2 R: (1.31)

As the name suggests self-adjoint operators equal their adjoint

Ay = A: (1.32)

Self-adjoint operators additionally possess acomplete setof orthogonal eigenstates

ham jan i = � mn : (1.33)

The eigenstates of an operatorO may therefore be chosen as an orthogonal basis for the

Hilbert space H.

Hermitian operators are central to quantum mechanics. Thepostulates of quantum

mechanicsassume that everyphysical observableof the system may be represented by

a linear self-adjoint operator [25]. The eigenvaluesf ang of a hermitian operator A

may then be understood as the possible measurement outcomes of the observableA.

If a measurement results inan the system is certainly occupying one of the possible

eigenstatesjan i associated with an [26]. This process is often referred to as thewave-

function collapse[25].

Once the system has collapsed into a particular state ofA it is natural consider if there

exist any additional observablesB that may be measured without further disturbing the

system. The operatorsA and B are then said to be compatible and may be measured

"simultaneously".

Such observables may be found by considering the order in whichA and B are measured.

In general, the measurement of an observableA followed by the measurement of an

observableB is di�erent than the reversed measurement. To "quantify" the discrepancy

between the two measurement sequences one introduces thecommutator [A; B ] of A and

B

[A; B ] = AB � BA: (1.34)

It follows that two observables A and B may only be measured simultaneously if they

commute

[A; B ] = 0 : (1.35)

From a mathematical point of view commuting operators share a common set of eigen-

states fj an ; bm ig , so that each eigenstate may be characterised by the eigenvalues ofA

and B

A jan ; bm i = an jan ; bm i and B jan ; bm i = bm jan ; bm i : (1.36)
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1.2.3 State and operator representations

As discussed earlier, for a spin with spin quantum numberI the projection quantum

number mI may take one of the values within the setf mI g

f mI g = f� I; � I + 1 ; : : : ; I � 1; I g: (1.37)

The projection quantum number represents the number of independent spin states. In

general there are (2I + 1) independent spin states for a spinI

fj I; m I ig = fj I; � I i ; jI; � I + 1 i ; : : : ; jI; I � 1i ; jI; I ig : (1.38)

The set of spin statesfj I; m I ig spans the Hilbert spaceH of the spin. The dimension

of H for a single spinI is therefore given by the following:

NH = dim( H) = 2 I + 1 : (1.39)

A representation may be constructed by mapping each of the independent spin states

onto one of the standard basis vectors ofCNH . For a spin I = 1=2 particle for example

there are two independent spins states. A vector representation may be constructed as

shown below:

j1=2; � 1=2i 7!

"
1

0

#

and j1=2; +1=2i 7!

"
0

1

#

: (1.40)

The same reasoning applies to spin systems with several spins. For a system ofN spins

with spin quantum numbers f I 1; I 2 : : : I N g the �rst spin may occupy one of its possible

(2I 1 + 1) states, the second spin one of its (2I 2 + 1) possible states, etc. The number of

independent spin states is therefore by the following:

NH =
NY

i =1

(2I i + 1) : (1.41)

Mathematically the composite space is constructed by formingtensor products(
 ) with

the individual spin spacesH i

H = H 1 
 H 2 
 � � � 
 H N : (1.42)
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Having chosen a representation for the individual members, the tensor product for two

matrices A and B may be carried out as follows:

A 
 B =

2

6
6
6
6
4

[A]11B [A]12B : : : [A]1NH
B

[A]21B [A]22B : : : [A]2NH
B

...
...

...
...

[A]NH 1B [A]NH 2B : : : [A]NH NH
B

3

7
7
7
7
5

: (1.43)

For two spins with I = 1=2 for example the formula above leads to the following:

j� 1=2; � 1=2i =

j1=2; � 1=2i 
 j 1=2; � 1=2i
7!

2

6
6
6
6
4

1

0

0

0

3

7
7
7
7
5

;
j� 1=2; +1=2i =

j1=2; � 1=2i 
 j 1=2; +1=2i
7!

2

6
6
6
6
4

0

1

0

0

3

7
7
7
7
5

;

j+1=2; � 1=2i =

j1=2; +1=2i 
 j 1=2; � 1=2i
7!

2

6
6
6
6
4

0

0

1

0

3

7
7
7
7
5

;
j+1=2; +1=2i =

j1=2; +1=2i 
 j 1=2; +1=2i
7!

2

6
6
6
6
4

0

0

0

1

3

7
7
7
7
5

:

(1.44)

Note that whenever all spins share the same spin numberI it is common to only use

the projection quantum numbers mI to label a speci�c spin state.

The operators for the composite space are constructed in similar fashion. An operator

Q solely acting on the i 'th spin is constructed by a sequence ofN unity operators with

the i 'th unity operator being replaced by Q

Qi = 11 
 � � � 
 1i � 1 
 Q 
 1i +1 
 � � � 
 1N ; (1.45)

where 1j represents the unity operator for the j 'th spin. Many-body interactions are

constructed by simple composition of single-body operators. Some matrix examples for

two spins with I = 1=2 are given below:

I 1z = I z 
 12 7!

2

6
6
6
6
4

1
2 0 0 0

0 1
2 0 0

0 0 � 1
2 0

0 0 0 � 1
2

3

7
7
7
7
5

; I 2z = 11 
 I z 7!

2

6
6
6
6
4

1
2 0 0 0

0 � 1
2 0 0

0 0 1
2 0

0 0 0 � 1
2

3

7
7
7
7
5

;

I 1zI 2z = I z 
 I z 7!

2

6
6
6
6
4

1
4 0 0 0

0 � 1
4 0 0

0 0 � 1
4 0

0 0 0 � 1
4

3

7
7
7
7
5

;

(1.46)
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where I iz measures the spin angular momentum along thez-axis of the i 'th spin and

I iz I jz measures the correlation between thez-angular momentum of spinsi and j .

1.2.4 Time evolution of states

The time evolution of a generic state vector j i is governed by the (time-dependent)

Schr•odinger equation
d
dt

j (t)i = � i H (t) j (t)i ; (1.47)

where the operator H is the Hamiltonian of the system. Explicit expressions for the

Hamiltonian of a spin system will be given in section 1.3. The Hamiltonian is always

hermitian

H (t) = H y(t): (1.48)

Physically the Hamiltonian describes thetotal energy of the system. The eigenstates of

the Hamiltonian are called energy eigenstatesand the eigenvalues are theenergy levels

of the system

H (t) jni = En jni : (1.49)

The energiesEn are speci�ed in Joule [J]. It is however NMR convention to work in

natural units . For this purpose the Hamiltonian is rede�ned as follows:

H (t) = ~� 1H (t): (1.50)

The eigenstates remain unchanged but the eigenenergies are now speci�ed in angular

frequencies [rad s� 1]. The term eigenfrequenciesof the Hamiltonian is then more appro-

priate

H (t) jni = ! n jni : (1.51)

For a time-dependent Hamiltonian the eigenstates and eigenvalues are in general func-

tions of time. Their explicit time-dependence has been suppressed for simplicity.

The solution to the Schr•odinger equation may be speci�ed in terms of atime ordered

exponential

j (t)i = T exp
�

� i
Z t

0
H (s)ds

�
j (0)i = U(t; 0) j (0)i : (1.52)

Time ordering is indicated by the Dyson time ordering operator T [25]. Formally the

Dyson time ordering operator acts on the series expansion of the exponential. A time

ordered exponential resulting from the solution of the Schr•odinger equation is often ab-

breviated by U(t; 0). The operator U(t; 0) is called thesystem propagatoras it translates

the system forwards in time. It is common practice to suppress the initial time point

U(t; 0) = U(t) if the evolution starts at time t = 0.
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1.2.5 Unitary transformations

Another special class of linear operators areunitary operators. Unitary operators are

de�ned by the requirement that the corresponding inverse operation is given by their

adjoint

V Vy = V yV = 1: (1.53)

A physical motivation may be given as follows. For closedquantum systems (systems

that are not in contact with a thermal environment) dynamics are in principle reversible

because the energy of the system is a constant. Any unitary transformationV should

therefore leave the inner product of a state vector invariant

h j i = hV  jV  i ; hV  jV  i = h j V yV j i ; =) V yV = 1: (1.54)

A particular simple example of a unitary transformation is the propagator of the system

Uy(t)U(t) = 1: (1.55)

In general the (time-ordered) exponential of an operatoriQ (t), where Q is hermitian,

always leads to a unitary transformation.

A small subtlety arises when working with transformations of this kind. The transfor-

mation V and the state j i are geometric objectsand coordinate independent. In other

words the choice of coordinates should not matter.

When working with coordinates however the transformation of a statej i may be un-

derstood in two distinct ways. To see this the statej i is �rst expanded in terms of a

given basis

j i =

 
NHX

n=1

cn jbn i

!

: (1.56)

The transformation V may now act either on the vector coordinatescn or the basis

vectors jbn i . In the �rst case one speaks ofactive transformations whereas in the latter

case one speaks ofpassivetransformations.

Geometrically an active transformation "physically" moves the state vector leaving the

basis vectors invariant. A passive transformation leaves the state vector invariant but

moves the basis vectors. This is simply a matter of convention.

If the passive point of view is chosen thenew basis vectorsmay be expressed in terms

of the old basis vectorsas follows:

j~bn i =
NHX

m=1

jbm i [V ]mn : (1.57)
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The transformed state j ~ i in terms of the new basis is then given by the expression

below:

j ~ i =
NHX

n=1

cn j~bn i : (1.58)

The coordinatescn of the state j ~ i are unchanged and only the basis elements have been

moved.

If the active point of view is chosen the new vector componentsmay be expressed in

terms of the old vector componentsas shown below:

~cn = [ V ]nm cm : (1.59)

For the active point of view the new state j ~ i then reads as follows:

j ~ i =
NHX

n=1

~cn jbn i : (1.60)

Here the basis vectors remain the same but the vector coordinates have changed.

In agreement with most physics literature the active point of view is chosen. So whenever

an expression likeV j i is encountered it should be interpreted as the corresponding

matrix-vector multiplication

V j i =

2

6
6
6
6
4

V11 V12 : : : V1NH

V21 V22 : : : V2NH

...
...

...
...

VNH 1 VNH 2 : : : VNH NH

3

7
7
7
7
5

2

6
6
6
6
4

c1

c2
...

cNH

3

7
7
7
7
5

: (1.61)

With this convention it is straightforward to show that the vector coordinates ~cn with

respect to the transformed basisj~bn i are calculated by the adjoint operation V y j i .

As a consequence of the observation above the physical evolution of the system may

equally well be described by an unitarily equivalent state vectorj ~ i

j ~ (t)i = V y(t) j (t)i ; (1.62)

whereV y(t) takes the state j i to a new (time-dependent)reference frameor non-inertial

frame.
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The Schr•odinger equation satis�ed by the transformed state vectorj ~ (t)i may be derived

by considering its time derivative

d
dt

j ~ (t)i =
d
dt

�
V y(t) j (t)i

�
=

�
d
dt

V y(t)
�

j (t)i + V y(t)
�

d
dt

j (t)i
�

=
�

d
dt

V y(t) � iV y(t)H (t)
�

j (t)i

=
�

d
dt

V y(t) � iV y(t)H (t)
�

V (t)V y(t) j (t)i

= � i
�

V y(t)H (t)V (t) + i
�

d
dt

V y(t)
�

V (t)
�

j ~ (t)i

= � i ~H (t)j ~ (t)i :

(1.63)

The dynamics of the system are now governed by thetransformed Hamiltonian ~H . The

�rst contribution to ~H corresponds to the Hamiltonian as experienced by an observer

within the new reference frame. The second contribution to ~H is an inertial term and

describes the relative movement of the two frames.

1.3 Nuclear spin interactions

The dynamics of any quantum system are determined by the Schr•odinger equation and

require careful construction of the appropriate Hamiltonian. The interaction of nuclear

spins with their environment and other spins is described by thenuclear spin Hamilto-

nian.

In general nuclear spins may interact with magnetic and electric �elds. These may orig-

inate from external or internal perturbations. External perturbations refer to electric or

magnetic �elds that are applied by an apparatus, whereas internal perturbations arise

from the sample itself. As illustrated in �gure 1.9 spin interactions may therefore be

divided into external spin interactions and internal spin interactions .

While the zoo of spin interactions is certainly large, it is useful to note that every spin

interaction reduces to the same recipe

H � = C� I i � W� � I j or H � = C� I i � W� � K ; (1.64)

where W� represents a 3� 3 Cartesian tensor or simply an interaction tensor and C�

an interaction speci�c constant. The interaction tensor is contracted with the Cartesian

vector operators (I i ; I j ) or a Cartesian (classical) vectorK .

Tensors are generalisations of vectors. As such they may be represented bytensor

componentswith respect to a particular coordinate system. Cartesian tensors are in
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Figure 1.9: Overview of the most common nuclear spin interactions. The spin Hamil-
tonian is roughly separated into internal and external interactions. External interac-
tions refer to the coupling of the spin angular momenta to external magnetic �elds.
Internal interactions refer to the coupling of spin angular momenta to their molecular
environment. The spin angular momenta are represented by small spheres with an
arrow. An interaction tensor is represented by shaded areas around the spin. External
magnetic �elds are represented by hollow arrows and dipolar magnetic �elds are rep-
resented by their �eld lines. A detailed discussion of these interactions is given in the
main text.

general speci�ed by 9 coe�cients that are conveniently collected in terms of a matrix

W� =

2

6
4

Wxx Wxy Wxz

Wyx Wyy Wzx

Wzx Wzy Wzz

3

7
5 : (1.65)

The notation W�� for the tensor components indicates the tensor's extension into that

particular Cartesian direction.
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Figure 1.10: Graphical representation of a Cartesian interaction tensor with its cor-
responding matrix elements. The laboratory coordinate frame axes are indicated by
f ex ; ey ; ezg. A Cartesian tensor may in general be speci�ed by the extension of an
ellipsoid and its orientation with respect to the laboratory coordinate frame. A suit-
able rotation R(PAS ! lab) may align the tensor and the laboratory frame axes. In
this case the matrix representation of the tensor appears to be diagonal to an observer
within the laboratory frame.

For (most) spin interaction tensors there exists a special coordinate system that diago-

nalises the interaction matrix. This coordinate system is called theprincipal axes system

(PAS) and the corresponding eigenvalues are theprincipal values of the tensor.

As �gure 1.10 indicates a tensor may then be visualised as anellipsoid in space by

making use of its principal values.

If the axes of the laboratory frame and the PAS are aligned the interaction tensor appears

to be diagonal with respect to the laboratory frame. The rotation R(PAS ! lab) relating

the two frames is only unique up to permutation of the diagonal elements. To ensure

uniqueness of the rotation the diagonal elements are sorted according to the following

convention

j� 3 � Wisoj � j � 1 � Wisoj � j � 2 � Wisoj with Wiso =
1
3

Tr( W ): (1.66)
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